NCERT Solutions for Plus Two Maths Chapter 1 Relations and Functions Ex 1.3, NCERT Solutions for Plus Two Maths is available here. Plus Two Math's solutions are given here as a PDF file which is easily downloadable free of cost by the students of Plus Two. If you want to learn more about NCERT Solutions then visit www.keralanotes.com; this website provides complete solutions for Plus Two mathematics
Practice the NCERT Solutions PDF Ex 1.3 to solve examples related to Relations and Functions. This NCERT Solutions for Plus Two Maths Chapter helps you understand what are Relations and Functions.
Board | SCERT, Kerala |
Text Book | NCERT Based |
Class | Plus Two |
Subject | Math's Textbook Solution |
Chapter | Chapter 1 |
Exercise | Ex 1.3 |
Chapter Name | Relations and Function |
Category | Plus Two Kerala |
Kerala Syllabus Plus Two Math's Textbook Solution Chapter 1 Relation and Function Exercises 1.3
Chapter 1 Relations and Function Solution
Chapter 1 Relations and Function Exercise 1.3
Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
The functions f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} are defined as
f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}.
Let f, g, and h be functions from R to R. Show that
To prove:
Find gof and fog, if
(i)
(ii)
(i)
(ii)
If, show that f o f(x) = x, for all. What is the inverse of f?
It is given that.
Hence, the given function f is invertible and the inverse of f is f itself.
State with reason whether following functions have inverse
(i) f: {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} with
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} with
h = {(2, 7), (3, 9), (4, 11), (5, 13)}
(i) f: {1, 2, 3, 4} → {10}defined as:
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
From the given definition of f, we can see that f is a many one function as: f(1) = f(2) = f(3) = f(4) = 10
∴f is not one-one.
Hence, function f does not have an inverse.
(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} defined as:
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
From the given definition of g, it is seen that g is a many one function as: g(5) = g(7) = 4.
∴g is not one-one,
Hence, function g does not have an inverse.
(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} defined as:
h = {(2, 7), (3, 9), (4, 11), (5, 13)}
It is seen that all distinct elements of the set {2, 3, 4, 5} have distinct images under h.
∴Function h is one-one.
Also, h is onto since for every element y of the set {7, 9, 11, 13}, there exists an element x in the set {2, 3, 4, 5}such that h(x) = y.
Thus, h is a one-one and onto function. Hence, h has an inverse.
Show that f: [−1, 1] → R, given byis one-one. Find the inverse of the function f: [−1, 1] → Range f.
(Hint: For y ∈Range f, y =, for some x in [−1, 1], i.e.,)
f: [−1, 1] → R is given as
Let f(x) = f(y).
∴ f is a one-one function.
It is clear that f: [−1, 1] → Range f is onto.
∴ f: [−1, 1] → Range f is one-one and onto and therefore, the inverse of the function:
f: [−1, 1] → Range f exists.
Let g: Range f → [−1, 1] be the inverse of f.
Let y be an arbitrary element of range f.
Since f: [−1, 1] → Range f is onto, we have:
Now, let us define g: Range f → [−1, 1] as
∴gof = and fog =
f−1 = g
⇒
Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
f: R → R is given by,
f(x) = 4x + 3
One-one:
Let f(x) = f(y).
∴ f is a one-one function.
Onto:
For y ∈ R, let y = 4x + 3.
Therefore, for any y ∈ R, there exists such that
∴ f is onto.
Thus, f is one-one and onto, and therefore, f−1 exists.
Let us define g: R→ R by.
∴
Hence, f is invertible and the inverse of f is given by
Consider f: R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f−1 of given f by, where R+ is the set of all non-negative real numbers.
f: R+ → [4, ∞) is given as f(x) = x2 + 4.
One-one:
Let f(x) = f(y).
∴ f is a one-one function.
Onto:
For y ∈ [4, ∞), let y = x2 + 4.
Therefore, for any y ∈ R, there exists such that
.
∴ f is onto.
Thus, f is one-one and onto, and therefore, f−1 exists.
Let us define g: [4, ∞) → R+ by,
∴
Hence, f is invertible and the inverse of f is given by
Consider f: R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with.
f: R+ → [−5, ∞) is given as f(x) = 9x2 + 6x − 5.
Let y be an arbitrary element of [−5, ∞).
Let y = 9x2 + 6x − 5.
∴f is onto, thereby range f = [−5, ∞).
Let us define g: [−5, ∞) → R+ as
We now have:
∴and
Hence, f is invertible and the inverse of f is given by
Let f: X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y,
fog1(y) = IY(y) = fog2(y). Use one-one ness of f).
Let f: X → Y be an invertible function.
Also, suppose f has two inverses (say).
Then, for all y ∈Y, we have:
Hence, f has a unique inverse.
Consider f: {1, 2, 3} → {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1 = f.
Function f: {1, 2, 3} → {a, b, c} is given by,
f(1) = a, f(2) = b, and f(3) = c
If we define g: {a, b, c} → {1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3, then we have:
∴and, where X = {1, 2, 3} and Y= {a, b, c}.
Thus, the inverse of f exists and f−1= g.
∴f−1: {a, b, c} → {1, 2, 3} is given by,
f−1(a) = 1, f−1(b) = 2, f-1(c) = 3
Let us now find the inverse of f−1 i.e., find the inverse of g.
If we define h: {1, 2, 3} → {a, b, c} as
h(1) = a, h(2) = b, h(3) = c, then we have:
∴, where X = {1, 2, 3} and Y = {a, b, c}.
Thus, the inverse of g exists and g−1 = h ⇒ (f−1)−1 = h.
It can be noted that h = f.
Hence, (f−1)−1 = f.
Let f: X → Y be an invertible function. Show that the inverse of f−1 is f, i.e.,
(f−1)−1 = f.
Let f: X → Y be an invertible function.
Then, there exists a function g: Y → X such that gof = IXand fog = IY.
Here, f−1 = g.
Now, gof = IXand fog = IY
⇒ f−1of = IXand fof−1= IY
Hence, f−1: Y → X is invertible and f is the inverse of f−1
i.e., (f−1)−1 = f.
If f: R → R be given by, then fof(x) is
(A) (B) x3 (C) x (D) (3 − x3)
f: R → R is given as.
The correct answer is C.
Letbe a function defined as. The inverse of f is map g: Range
(A) (B)
(C) (D)
It is given that
Let y be an arbitrary element of Range f.
Then, there exists x ∈such that
Let us define g: Rangeas
Now,
∴
Thus, g is the inverse of f i.e., f−1 = g.
Hence, the inverse of f is the map g: Range, which is given by
The correct answer is B.
PDF Download
Chapter 1: Relations and Function EX 1.3 Solution
Chapter 1: Relations and Function EX 1.3 Solution- Preview
Plus Two Math's Chapter Wise Textbook Solution PDF Download
- Chapter 1: Relations and Functions
- Chapter 2: Inverse Trigonometric Functions
- Chapter 3: Matrices
- Chapter 4: Determinants
- Chapter 5: Continuity and Differentiability
- Chapter 6: Application of Derivatives
- Chapter 7: Application of Integrals
- Chapter 8: Integrals
- Chapter 9: Differential Equations
- Chapter 10: Vector Algebra
- Chapter 11: Three Dimensional Geometry
- Chapter 12: Linear Programming
- Chapter 13: Probability
Plus Two Math's Part I
Plus Two Math's Part II
Plus Two Math's Related Links
Plus Two Maths's Notes | Click Here |
Plus Two Maths's Textbook Solutions | Click Here |
Plus Two Focus Area | Click Here |
Plus Two Maths's Previous Year Questions with Solution | Click Here |
Plus Two Latest Syllabus | Click Here |
Other Related Links
Plus Two Physics | Click Here |
Plus Two Chemistry | Click Here |
Plus Two Mathematics | Click Here |
Plus Two Botany | Click Here |
Plus Two Zoology | Click Here |
Plus Two Computer Science | Click Here |
Plus Two English | Click Here |