In this chapter, you’ll get a clear understanding of Relations and Functions. Both Relations and Functions have a different meaning in mathematics; however many get confused and use these words interchangeably. A ‘relation’ means a relationship between two elements of a set. It is a set of inputs and outputs, denoted as ordered pairs (input, output). We can also represent a relation as a mapping diagram or a graph. A relation can either be symbolised by Roster method or Set-builder method. On the other hand, a ‘function’ is a special type of relation, in which each input is related to a unique output. So, all functions are relations, but not all relations are functions.
Board | SCERT, Kerala |
Text Book | NCERT Based |
Class | Plus One |
Subject | Math's Textbook Solution |
Chapter | Chapter 2 |
Exercise | Ex 2.3 |
Chapter Name | Relations and Functions |
Category | Plus One Kerala |
Kerala Syllabus Plus One Math's Textbook Solution Chapter 2 Relations and Functions Exercises 2.3
Chapter 2 Relations and Functions Textbook Solution
Chapter 2 Relations and Functions Exercise 2.3
Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
(iii) {(1, 3), (1, 5), (2, 5)}
(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain = {2, 5, 8, 11, 14, 17} and range = {1}
(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}
(iii) {(1, 3), (1, 5), (2, 5)}
Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.
Find the domain and range of the following real function:
(i) f(x) = –|x| (ii)
(i) f(x) = –|x|, x ∈ R
We know that |x| =
Since f(x) is defined for x ∈ R, the domain of f is R.
It can be observed that the range of f(x) = –|x| is all real numbers except positive real numbers.
∴The range of f is (–, 0].
(ii)
Sinceis defined for all real numbers that are greater than or equal to –3 and less than or equal to 3, the domain of f(x) is {x : –3 ≤ x ≤ 3} or [–3, 3].
For any value of x such that –3 ≤ x ≤ 3, the value of f(x) will lie between 0 and 3.
∴The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3]
A function f is defined by f(x) = 2x – 5. Write down the values of
(i) f(0), (ii) f(7), (iii) f(–3)
The given function is f(x) = 2x – 5.
Therefore,
(i) f(0) = 2 × 0 – 5 = 0 – 5 = –5
(ii) f(7) = 2 × 7 – 5 = 14 – 5 = 9
(iii) f(–3) = 2 × (–3) – 5 = – 6 – 5 = –11
The function ‘t’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by.
Find (i) t (0) (ii) t (28) (iii) t (–10) (iv) The value of C, when t(C) = 212
The given function is.
Therefore,
(i)
(ii)
(iii)
(iv) It is given that t(C) = 212
Thus, the value of t, when t(C) = 212, is 100.
Find the range of each of the following functions.
(i) f(x) = 2 – 3x, x ∈ R, x > 0.
(ii) f(x) = x2 + 2, x, is a real number.
(iii) f(x) = x, x is a real number
(i) f(x) = 2 – 3x, x ∈ R, x > 0
The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as
x | 0.01 | 0.1 | 0.9 | 1 | 2 | 2.5 | 4 | 5 | … |
f(x) | 1.97 | 1.7 | –0.7 | –1 | –4 | –5.5 | –10 | –13 | … |
Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.
i.e., range of f = (–, 2)
Alter:
Let x > 0
⇒ 3x > 0
⇒ 2 –3x < 2
⇒ f(x) < 2
∴Range of f = (–, 2)
(ii) f(x) = x2 + 2, x, is a real number
The values of f(x) for various values of real numbers x can be written in the tabular form as
x | 0 | ±0.3 | ±0.8 | ±1 | ±2 | ±3 | … | |
f(x) | 2 | 2.09 | 2.64 | 3 | 6 | 11 | ….. |
Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.
i.e., range of f = [2,)
Alter:
Let x be any real number.
Accordingly,
x2≥ 0
⇒ x2 + 2 ≥ 0 + 2
⇒ x2 + 2 ≥ 2
⇒ f(x) ≥ 2
∴ Range of f = [2,)
(iii) f(x) = x, x is a real number
It is clear that the range of f is the set of all real numbers.
∴ Range of f = R
PDF Download
Chapter 2: Relations and Functions EX 2.3 Solution
Chapter 2: Relations and Functions EX 2.3 Solution- Preview
Plus One Math's Chapter Wise Textbook Solution PDF Download
- Chapter 1: Sets
- Chapter 2: Relations and Functions
- Chapter 3: Trigonometric Functions
- Chapter 4: Principle of Mathematical Induction
- Chapter 5: Complex Numbers and Quadratic Equations
- Chapter 6: Linear Inequalities
- Chapter 7: Permutation and Combinations
- Chapter 8: Binomial Theorem
- Chapter 9: Sequences and Series
- Chapter 10: Straight Lines
- Chapter 11: Conic Sections
- Chapter 12: Introduction to Three Dimensional Geometry
- Chapter 13: Limits and Derivatives
- Chapter 14: Mathematical Reasoning
- Chapter 15: Statistics
- Chapter 16: Probability
Plus One Math's Part I
Plus One Math's Part II
Plus One Maths Related Links
Plus One Maths Notes | Click Here |
Plus One Maths Textbook Solutions | Click Here |
Plus One Focus Area | Click Here |
Plus One Maths Previous Year Questions with Solution | Click Here |
Plus One Latest Syllabus | Click Here |
Other Related Links
Plus One Physics | Click Here |
Plus One Chemistry | Click Here |
Plus One Mathematics | Click Here |
Plus One Botany | Click Here |
Plus One Zoology | Click Here |
Plus One Computer Science | Click Here |
Plus One English | Click Here |